Objectives

- Brief summary of FES cycling literature
- FES cycling for children
 - Study completed at Shriner Hospitals for Children
- FES cycling for adults
 - Current study funded by Craig H. Neilsen Foundation

Evidence for FES Cycling in SCI
FES Cycling

- FES Cycling studies have primarily addressed
 - Bone
 - Muscle
 - Metabolic syndrome
 - Cardiovascular
 - Respiratory
 - Metabolic

FES Cycling: Bone

- Bone Measures
 - Bone mineral density
 - DXA
 - Bone microarchitecture
 - MRI/pQCT/CT
 - Bone markers

FES Cycling: Bone Overview

- Overview
 - Mixed results
 - The role of intensity needs to be understood
 - Measurement techniques need re-evaluation
- Future
 - Low cadence cycling
 - Calcium and/or vitamin D supplements
 - Other ways to increase intensity to load bone
FES Cycling: Muscle
- CSA/volume
 - MRI, CT, girth
- Strength
 - Volitional
 - Stimulated

FES Cycling: Muscle Overview
- Muscle Size
 - ↑ muscle and muscle fiber CSA and muscle volume
 - May attenuate muscle loss with acute SCI
- Muscle strength
 - ↑ stimulated & volitional strength
- Muscle properties
 - Possible fiber change (mixed results)
 - ↑ capillaries around fibers but may be proportional to gain
- Future
 - Low cadence cycling or sprints at high resistance
 - Other ways to increase intensity

FES Cycling: Cardiovascular/Respiratory
- Acute effects
- Effects over time with intervention
FES Cycling: Overview
Cardiovascular/Respiratory

• Overview
 • Oxygen uptake can increase with FES cycling training
 (acutely and as outcome)
 • We may not be training subjects hard enough for
 greatest benefit

• Future
 • Examine ways to continue gains after 6 months
 • Optimize training strategies to allow greatest benefits
 with reasonable time commitment

FES Cycling: Metabolic/Body Comp

• Body Composition
 • Lean tissue
 • Adipose tissue
 • Muscle to adipose ratios
 • Lipids
 • Inflammatory markers

FES Cycling: Metabolic/Body Comp
Overview

• Body composition
 • ↑ lean tissue without ↓ in adipose
 • Need ways to impact adipose

• Metabolic
 • No impact on lipids
 • Some evidence for impact on inflammatory
 markers/glucose
 • More research needed
FES Cycling: Motor Learning/Recovery

- Overview
 - Some case reports/series of increased volitional strength and/or sensation
 - More research needed with incomplete SCI to understand effects
 - Possible complement to gait/locomotor training?

Cycling with FES for Children with SCI

This work was conducted at Shriners Hospitals for Children, Philadelphia, PA

Subjects

- Thirty children, ages 5 to 13 years
- AIS A, B, or C SCI
- At least 1 year post SCI
Intervention Groups

- Children were randomized to:
 - FES cycling (FESC)
 - Passive cycling (PC)
 - E-stim exercise (ES)
- Exercise performed for 60 minutes 3x/wk for 6 months

Data Collected

- Progressive upper extremity ergometer test until fatigue
 - Resting and peak HR
 - Peak VO2/kg
- Fasting lipid profile

Data Collected

- Bone
 - DXA to assess BMD of hip, distal femur and proximal tibia
- Muscle: Quadriceps and Hamstrings
 - Stimulated strength
 - Muscle volume via MRI
Results

- Intervention adherence (accounting for allowed missed sessions)
 - FESC: 95.2 ± 18.1%
 - PC: 107.2 ± 16.2%
 - ES: 105.5 ± 19.6%

Results: Oxygen Uptake

Discussion: Oxygen Uptake

- Clinically significant change in FES group (p=0.057)
- VO2 in children after an exercise program
 - 12 week aerobic exercise program for 10 to 12 year old children with typical development showed average VO2 max increases of 6.5% (Rowland TW, Pediatrics, 1995)
 - Our FES cycling group improved on average 21.9%
Results: Lipids

Discussion: Lipids

- Positive lipid changes in children post exercise (Kelley GA. Atherosclerosis, 2007)
 - Triglycerides: >22.8 mg/dL decrease
 - Cholesterol: >4.4 mg/dL decrease
 - HDL: >4.8 mg/dL increase
 - LDL: >4.3 mg/dL decrease

- Our subjects did not have changes by these guidelines

Results: Bone

- No differences between or within groups
Results: Bone/Possible Threshold

![Graph showing Bone/Possible Threshold](image)

Discussion: Bone
- BMD changes observed were greater than the reported 0.9 to 10% gains after exercise for children with and without disability
- Cycling with and without FES may be beneficial for skeletal health in pediatric SCI

Results: Muscle Strength
- Between groups: Differences for quadriceps strength but not hamstrings
 - Post hoc: FESC gained more strength than PC and ES
- Within group
 - FESC: ↑ quadriceps but not hamstrings
 - PC: no change in quadriceps or hamstrings
 - ES: no change in quadriceps or hamstrings
Results: Muscle Strength

- Baseline vs 6 months
- FES: Quadriceps (p=0.011) and Hamstrings (p=0.421)

Results: Muscle Volume

- Between groups: Differences for quadriceps volume but not hamstrings
 - Post hoc: ES gained more in muscle volume compared to the FES and ES
- Within group:
 - FESC: ↑ quadriceps but not hamstrings
 - PC: no changes in quadriceps or hamstrings
 - ES: ↑ quadriceps but not hamstrings
Discussion: Muscle

- Children receiving either electrically stimulated exercise ↑ in muscle size and/or stimulated strength
 - FESC: ↑ quad strength & volume
 - ES: ↑ quad volume but not strength

- These changes may decrease their risk of cardiovascular disease, insulin resistance, glucose intolerance, and type II diabetes

Overall Conclusions

- Changes seen
 - Clinical change in oxygen uptake with FES cycling
 - No impact on lipids
 - Clinical change in bone with FES and passive cycling
 - Muscle gains using electrical stimulation

- Implications
 - May need to increase exercise intensity

FES Cycling in Adults with SCI

Current study funded by the Craig H. Neilsen Foundation
Current FES Cycling Study

- **The overall objective** is to compare the effects of two different FES cycling paradigms for adults with SCI
 - novel low cadence, high resistance cycling paradigm
 - more traditional high cadence, low resistance cycling paradigm

It is hypothesized that the low cadence, high resistance group will experience greater musculoskeletal and cardiovascular improvements.

Inclusion/Exclusion

- **Inclusion**
 - AIS A or B SCI
 - Intact lower motor neurons
 - 18-65 years old (pre-menopausal for women)

- **Exclusion**
 - Current fracture or pressure sore
 - Presence of contraindications to MRI
 - Other medical issues
 - Vent dependent

FES Cycling Intervention

- Subjects cycle for 1 hour, 3x/week for 6 months
 - Restorative Therapies, Inc. RT300

- Cycling paradigms
 - 50 rpm
 - 20 rpm
Data Collection

- Musculoskeletal Measures
 - Distal femur and proximal tibia trabecular bone microarchitecture
 - Cortical bone structure
 - Areal bone mineral density
 - Bone-related histochemical values
 - Stimulated lower extremity muscle strength
 - Muscle volume

Data Collection

- Cardiovascular related measures
 - Fat-free tissue
 - Blood lipid and metabolic profiles
 - Muscle volume

 - Collected at baseline, 3 months (limited set), & 6 months

Subjects

- 11 have been enrolled in cycling phase
 - 5 completed study
 - 1 withdrew
 - 2 taking calcium and vitamin D supplements in preparation for cycling
 - More being screened
Preliminary results

- Imbalance across groups in data have currently due to withdrawal and adverse event

- Maximal resistance cycled
 - 1.0 to 1.6 Nm (1.2 ± 0.3) for the high cadence group
 - 1.1 to 5.2 Nm (3.0 ± 1.7) for the low cadence group

Bone

Distal femur trabecular bone

[Images of pre- and post-bone images]

Trabecular Bone Spacing

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>High 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Muscle and Fat Mass

Results to Date Summary

- Some trends are present
 - Trabecular spacing
 - Bone resorption
 - Muscle mass
- Re-evaluate once have more subjects completed
Next Steps

- FES cycling future research
 - Dosing questions
 - Load, duration, frequency
 - Optimizing cardiorespiratory outcomes
 - Studies with higher power
 - Multisite RCT
 - Longer term benefits and feasibility
 - Other exercise modes